Nonparametric Estimation of Probability Density Functions for Irregularly Observed Spatial Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple and Effective Connectionist Nonparametric Estimation of Probability Density Functions

Estimation of probability density functions (pdf) is one major topic in pattern recognition. Parametric techniques rely on an arbitrary assumption on the form of the underlying, unknown distribution. Nonparametric techniques remove this assumption In particular, the Parzen Window (PW) relies on a combination of local window functions centered in the patterns of a training sample. Although effec...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Estimation of nonparametric probability density functions with applications to automatic speech recognition

During the last decade, a new learning paradigm called Structural Risk Minimization (SRM) derived from Statistical Learning Theory, has become widely studied in machine learning. Machines implementing SRM, e. g., Support Vector Machines (SVMs) and Kernel Fisher Discriminants (KFDs), have been very successfully used for solving pattern recognition and function regression problems. SRM's ability ...

متن کامل

Nonparametric estimation and symmetry tests for conditional density functions

We suggest two improved methods for conditional density estimation. The first is based on locally fitting a log-linear model, and is in the spirit of recent work on locally parametric techniques in density estimation. The second method is a constrained local polynomial estimator. Both methods always produce non-negative estimators. We propose an algorithm suitable for selecting the two bandwidt...

متن کامل

Estimation of Probability Density Functions for the Higgs search

This note presents some investigations of smoothing routines for the estimation of PDF, specifically the HBOOK SMOOTH, MLP-fit and a Gaussian Kernel estimator. It presents some tests on the over-training, or more generally the accuracy of the PDF. No technique is perfect, but the kernel estimator gives the best results in a series of tests, and it is recommended that it be tried for the Higgs s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2014

ISSN: 0162-1459,1537-274X

DOI: 10.1080/01621459.2014.947376